THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

232/3

– PHYSICS –

Paper 3

(PRACTICAL) Apr. 2021 - 2½ hours

	r.										
Nai	ne				1	Index	Num	ber			
Car	ndidate's Signature	·			l	Date	•••••				
Inst	ructions to candid	lates									
(a)	Write your name an	d inde	x num	ber in	the sp	aces p	rovide	d abo	ve.		
(b)	Sign and write the d	late of	exami	nation	in the	space	s provi	ided a	bove.		
(c)	Answer all the quest	tions ir	n the s	paces	provid	led in t	the que	estion	paper.		
(d)	You are supposed to paper carefully befo	•					he 2½	hours	allowe	ed for this paper rea	ding the whole
(e)	Marks are given for						ns maio	le, the	ir suita	bility, accuracy and	use.
(f)	Candidates are advis									-	
(g)	Non-programmable								•		sed.
(h)	This paper consists									,	
(i)	Candidates should					to asc	ertain	that a	ll the p	pages are printed as	indicated and
	that no questions ar		-						•		
(j)	Candidates should a		_	uestio	ns in E	nglish				Twi	
,											
				Fo	r Exar	niner	's Use	Only	′		
Qı	uestion 1	a	С	e	f	g(i)	g(ii)	h(i)	h(ii)		
Maximum Score		1	1	6	5	3	1	2	1	Total	
Ca	indidate's Score										
Question 2		С	d	e	f	j	k				
Maximum Score		7	2	3	1	5	2			Total	f ¹

Grand Total

Candidate's Score

Question 1

You are provided with the following:

- two cells in a cell holder;
- a switch;
- a micrometer screw gauge;
- a nichrome wire mounted on a millimetre scale;
- a voltmeter;
- an ammeter;
- a jockey;
- connecting wires with crocodile clips.

Proceed as follows:

(a) Using the micrometer screw gauge, measure and record the diameter d of the wire.

d = mm

d = m

(1 mark)

(b) Set up the apparatus as shown in Figure 1.

Figure 1

(c) Using the voltmeter, measure the potential difference E across the battery before closing the switch.

 $E = \dots$ volts.

(1 mark)

A226

- (d) Adjust the length L of the wire to 0.1 m (10 cm). Close the switch, read and record the value of the current I in Table 1.
 - (e) Repeat (d) for the other values of L given in Table 1. Complete the table.

(6 marks)

Table 1

Length L (m)		0.1	0.2	0.3	0.4	0.5	0.6	0.7
Current I (A)								
$\frac{1}{I}A^{-1}$								

(f) On the grid provided; plot the graph of $\frac{1}{I}$ (y axis) against L.

(5 marks)

	(g)	From the graph, determine the:						
		(i)	gradient S;	(3 marks)				
			-					
		(ii)	intercept C on the $\frac{1}{I}$ axis.	(1 mark)				
919								
	(h)	Given	that:					
		(i)	$\frac{4K_1}{\pi d^2 E} = S \text{ determine the value of } K_1.$	(2 marks)				
_								
ACC		(ii)	$\frac{K_2}{E} = C$ determine the value of K_2 .	(1 mark)				
			sī .	••••••				
				•••••				

You are provided with the following:

- a metre rule;
- a biconvex lens;
- a source of light (bulb in a bulb holder, cells in a cell holder and a switch);
- a stand boss and clamp;
- a lens holder;
- a screen;
- a half metre rule;
- three pieces of plastic pipes A, B and C;
- a vernier callipers (to be shared);
- a stopwatch;
- some plasticine.

Proceed as follows

PART A

(a) Clamp the bulb holder onto the stand. Arrange the bulb, the lens and the screen along the metre rule as shown in Figure 2.

Figure 2

- Adjust the distance of the bulb from the lens to U = 25 cm. Put on the switch and adjust the position of the screen from the lens so that a sharp image of the bulb is observed. Record the distance V between the screen and the lens in Table 2.
 - (c) Repeat part (b) for the other values of U shown in Table 2. Complete the table. (7 marks)

Table 2

U cm	25	30	35				
V cm							
$M = \frac{V}{U}$							
$F = \frac{V}{M+1}$							

916

(d)	Determine the average value of F.	(2 marks)	

PART B

(e) Using the vernier callipers measure and record the diameters of the three pipes.

 d_A , d_B and d_C

A226

$$d_A = \dots m$$
 (1 mark)

$$d_B = \dots m$$
 (1 mark)

$$d_C = \dots m (1 mark)$$

(f) Measure and record the thickness X of the half metre rule.

$$X = \dots m$$
 (1 mark)

Place the pipe marked A on the bench and use the plasticine to stop it from rolling. (see Figure 3 (a)).

Figure 3 (a)

(h) Place the half metre rule onto the pipe such that it balances horizontally. Ensure that the half metre rule is perpendicular to the axis of the pipe.

(see Figure 3 (b)).

- Push one end of the balanced half metre rule slightly downwards and release it so that it oscillates up and down. Measure and record in **Table 3** the time for five complete oscillations.
 - (j) Repeat the procedure in (g), (h) and (i) for the other pipes B and C. Complete Table 3.

(5 marks)

Table 3

	Table						
	Pipe A	Pipe B	Pipe C				
Diameter d (m)							
Time for five oscillations							
Periodic time T (s)							
$\mathcal{Z} = T \sqrt{\frac{3(d-x)}{2}}$,						

(k)	Determine the average value of Z.	(2 marks)
2		
Ĭ.		

THIS IS THE LAST PRINTED PAGE.

616